بهبود مدل سازی شبکه های عصبی در پیش بینی نرخ ارز، با به کارگیری شاخص های تلاطم
نویسندگان
چکیده
این مقاله بر نقش شاخص های تلاطم در بهبود روش شبکه های عصبی برای پیش بینی روزانه دو نرخ ارز دلار و پوند در برابر یورو در بازار ارز تأکید دارد. بدین منظور دو شاخص واریانس و گارچ را به عنوان شاخص های تلاطم نرخ ارز به تفکیک در نظر گرفته و به دو طریق در مدل مورد استفاده قرار می دهیم. بار اول وقفة آن را به وقفه های نرخ ارز اضافه می کنیم و بار دیگر شاخص تلاطم را سطح بندی کرده و با دسته بندی مشاهدات براساس سطح تلاطم، مدل پیش بینی ویژه ای را برای هر دسته از مشاهدات می سازیم. نتایج نشان می دهد که مدل های سطوح بالای تلاطم، در مقایسه با مدل مبنا، قدرت پیش بینی نرخ ارز آتی را بهبود می دهند، اما در پیش بینی مدل های سطوح میانی و پایین تلاطم، بهبودی مشاهده نمی شود. بنابراین می توان گفت که در بازار ارز، تلاطم های پایین نرخ ارز برای عاملان اقتصادی خبر جدیدی نیست و در شکل دادن انتظارات برای پیش بینی نرخ ارز نقشی ندارد، در حالی که سطوح بالاتر تلاطم یک اطلاع جدید است. طبقهبندی jel: f31, f37, c63
منابع مشابه
مقایسه قدرت مدل های شبکه عصبی مصنوعی و شبکه عصبی پویا در پیش بینی نرخ ارز: کاربردی از تبدیل موجک
این مطالعه تلاشی است در جهت بهکارگیری ترکیب مدل شبکهی عصبی پویا و تجزیهی موجک جهت میسر نمودن امکان انتخاب یک الگوی بهینه جهت پیشبینی متغیر مذکور میباشد. جهت تحقق این مهم، از دادههای سریزمانی ماهانهی نرخ ارز طی بازهی زمانی فروردین 1377 الی آذر 1391، که مشتمل بر 177 مشاهده بوده که از این بین، تعداد 150 مشاهده جهت مدلسازیها استفاده شده و تعداد 27 مشاهده نیز جهت شبیهسازی و یا به بیان دی...
متن کاملبررسی جهش پولی نرخ ارز و پیش بینی آن با شبکه های عصبی مصنوعی در ایران
یکی از مباحث مهم در اقتصاد کلان، رابطه بین شوکهای پولی و نوسانات نرخ ارز در قالب تئوری جهش پولی نرخ ارز است. از آنجا که اقتصاد ایران طی سالهای بعد از انقلاب همواره در معرض گسترش پایه پولی قرار داشته است، لذا بررسی رابطه بین انبساطهای پولی و نوسانات نرخ ارز و متعاقباً نقش افزایش درجه شناورسازی نرخ ارز بر میزان افزایش این نوسان، موضوع و هدف اصلی مقاله حاضر را تشکیل میدهد. بر این اساس در بخش او...
متن کاملبه کارگیری منطق فازی برای بهبود عملکرد شبکه های عصبی مصنوعی به منظور پیش بینی نرخ ارز
روش های هوش محاسباتی، همچون شبکه های عصبی مصنوعی و منطق فازی، به عنوان ابزاری محبوب به منظور پیش بینی بازارهای پیچیده ی مالی معرفی شده اند. دقت پیش بینی ها ازجمله مهم ترین مشخصه های مدل های پیش بینی است و تلاش برای بهبود بخشیدن کارایی مدل های سری های زمانی هرگز متوقف نشده است. امروزه علی رغم روش های متعدد پیش بینی سری های زمانی که در چند دهه ی اخیر پیشنهاد شده اند، هنوز پیش بینی نرخ های ارز، کا...
متن کاملپیش بینی نرخ ارز یورو به دلار با تکنیک شبکه عصبی مصنوعی
پیش بینی نرخ ارز به عنوان یک متغیر اقتصادی مهم مورد علاقه فعالان اقتصادی است. یکی از رویکردهای متداول در پیش بینی، رویکرد تکنیکال است که از رفتار گذشته نرخ ارز برای پیش بینی استفاده می کند. البته با توجه به ساختار آشوب گونه و غیر خطی بازارهای مالی، نمی توان با یک روش مشخص و ساده که از ترکیب ابزارهای مختلف تکنیکال بدست می آید به پیش بینی بازار پرداخت و نیاز به روش های پیچیده تری می باشد. در دهه ...
متن کاملمدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی
شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
مجله تحقیقات اقتصادیناشر: دانشکده اقتصاد- دانشگاه تهران
ISSN 0039-8969
دوره 43
شماره 4 2010
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023